1. Introduction to Machine Learning
  2. 1. Week 1 - Data, Numpy, Matrices, Error/Loss functions and Regression
  3. 2. Week 2 - Non-Linear Regression, OLS, and Log Loss
  4. 3. Week 3 - Classification: SVMs, Naive Bayes, KNN and Decision Trees
  5. 4. Week 4 - Classification & Intro to Unsupervised Learning: Clustering & Dimensional Reduction
  6. 5. Week 5 - Neural Networks: ANNs, DNNs, and CNNs
  7. 6. Jupyter Notebook Export Tutorial

UCSD CSE151A Summer 2025

Week 5 - Neural Networks: ANNs, DNNs, and CNNs

Week 5 Lecture Material

  • Lecture Slides
    • Slides PDF Perceptrons
    • Slides PDF Adv. Neural Networks
    • Slides PDF Gradient Descent
    • Slides PDF Convolutions
  • Notebooks
    • BCC Data Notebook
    • Perceptron Notebook
    • ANN Notebook
    • Convolution Notebook
    • Gradient Descent Notebook

Week 5 Discussion

  • Notebook